Reference number of working document: ISO/TC 20/SC 14 N408 Date: 2007-09-28 Reference number of document: ISO/WD/27852 Committee identification: ISO/TC 20/SC 14/WG 3 Secretariat: ANSI # Space systems — Determining orbit lifetime Titre — Titre — Partie n: Titre de la partie ## **Warning** This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: International standard Document subtype: Document stage: (00)NWIP Stage Document language: É # **Copyright notice** This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO. Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester: ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be prosecuted. # **Contents** | 1 | Scope | - 1 · | - | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------| | 2 | Normative References | - 1 · | - | | 3<br>3.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.8<br>3.1.9<br>3.1.10<br>3.2 | Definitions, symbols and abbreviated terms Definitions Orbit lifetime Ballistic coefficient Disposal Phase Earth Equatorial Radius LEO-crossing orbit Long-duration orbit lifetime prediction Mission Phase Space debris Orbit Solar cycle Symbols and abbreviated terms | - 1<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2 | -<br>-<br>-<br>-<br>- | | 4<br>4.1<br>4.2<br>4.3<br>4.3.1<br>4.3.2<br>4.3.3 | Orbit Lifetime Assessment | - 4<br>- 4<br>- 5<br>- 5<br>- 5 | -<br>-<br>- | | 5<br>5.1<br>5.2<br>5.3<br>5.3.1<br>5.3.2 | Atmospheric density modelling | - 5 ·<br>- 7 ·<br>10 ·<br>10 · | -<br>-<br>- | | 6 | Orbit lifetime sensitivity to Sun-synchronous, Magic and Molniya orbits | 11 - | - | | 7 | Implication of Observed Thermospheric Global Cooling | 11 - | - | | Bibliog | ıraphy | 12 | - | | (inform<br>A.1 | native) Space population distribution | | | | Annex | B: 25-Year Lifetime Predictions Using Random Draw Approach (informative) | 14 - | - | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and nongovernmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this part of ISO may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. This International Standard was prepared by Technical Committee ISO/TC 20, Aircraft and Space Vehicles, Subcommittee SC 14, Space Systems and Operations. # Introduction A spacecraft is exposed to the risk of collision with orbital debris and operational satellites throughout its launch early orbit and mission phases. This risk is especially high during passage through or operations within the LEO region. To address these concerns, the Inter-Agency Space Debris Coordination Committee (IADC) recommended to the United Nations<sup>1</sup> (section 5.3.2 'Objects Passing Through the LEO Region'): "Whenever possible space systems that are terminating their operational phases in orbits that pass through the LEO region, or have the potential to interfere with the LEO region, should be de-orbited (direct re-entry is preferred) or where appropriate manoeuvred into an orbit with a reduced lifetime. Retrieval is also a disposal option." and "A space system should be left in an orbit in which, using an accepted nominal projection for solar activity, atmospheric drag will limit the orbital lifetime after completion of operations. A study on the effect of post-mission orbital lifetime limitation on collision rate and debris population growth has been performed by the IADC. This IADC and some other studies and a number of existing national guidelines have found 25 years to be a reasonable and appropriate lifetime limit." The Scientific and Technical Subcommittee (STSC) of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), acknowledging the benefit the IADC guidelines, established the Working Group on Space Debris to develop a set of recommended guidelines based on the technical content and the basic definitions of the IADC space debris mitigation guidelines, taking into consideration the United Nations treaties and principles on outer space. Consistent with the IADC recommendations (listed above), STSC Guideline 6 states that space mission planners, designers, manufacturers and operators should "Limit the long-term presence of spacecraft and launch vehicle orbital stages in the low-Earth orbit (LEO) region after the end of their mission." STSC guidelines also state, "For more in-depth descriptions and recommendations pertaining to space debris mitigation measures, Member States and international organizations may refer to the latest version of the IADC space debris mitigation guidelines and other supporting documents, which can be found on the IADC website (www.iadc-online.org)." The purpose of this standard is to provide a common, consensus approach to determining orbit lifetime, one that is sufficiently precise and easily implemented for the purpose of demonstrating compliance with IADC guidelines. This project offers standardized guidance and analysis methods to assess orbital lifetime for all LEO-crossing orbit classes. # **Space systems — Determining Orbit Lifetime** ## 1 Scope This standard describes a process for the estimation of orbit lifetime for space objects and associated debris in LEO-crossing orbits. The international standard also clarifies the following: - modeling approaches and resources for solar and geomagnetic activity modeling; - approaches for satellite ballistic coefficient estimation. - resources for atmosphere model selection. #### 2 Normative References. The IADC Guidelines<sup>1</sup> and the UNCOPUOS Guidelines<sup>2</sup> serve as normative references for this standard. # 3 Definitions, symbols and abbreviated terms #### 3.1 Definitions For the purpose of this document, the following terms and definitions shall apply. #### 3.1.1 Orbit lifetime the elapsed time between the orbiting satellite's initial or reference position (e.g., post-mission orbit) and orbit demise/reentry. The orbit's decay is typically represented by the reduction in perigee and apogee altitudes (or radii) as shown in Figure 1. Figure 1: Sample orbit lifetime decay profile #### 3.1.2 Ballistic coefficient - β, the ballistic coefficient of the satellite, where: - $\beta$ = (Coefficient of Drag $C_D$ ) \* (Object Cross-Sectional Area) / Mass. #### 3.1.3 Disposal Phase begins at the end of the mission phase for a space system and ends when the space system has performed the actions to reduce the hazards it poses to other space systems. #### 3.1.4 Earth Equatorial Radius Equatorial radius of the Earth - the equatorial radius of the Earth is taken as 6,378 km and this radius is used as the reference for the Earth's surface from which the orbit regions are defined.. #### 3.1.5 LEO-crossing orbit Low-Earth Orbit, defined as an orbit with perigee altitude of 2000 km or less. As can be seen in Figure A-1, orbits having this definition encompass the majority of the high spatial density spike of satellites and space debris. #### 3.1.6 Long-duration orbit lifetime prediction for the purposes of this standard, an orbit lifetime prediction spanning two solar cycles or more (e.g., 25-year orbit lifetime) #### 3.1.7 Mission Phase the phase where the space system fulfils its mission. Begins at the end of the launch phase and ends at the beginning of the disposal phase. #### 3.1.8 Space debris all man-made objects, including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non-functional. #### 3.1.9 Orbit the path followed by a space object. #### 3.1.10 Solar cycle historically, the ≈11-year solar cycle is based on the 13-month running mean for monthly sunspot number and is highly correlated with the 13-month running mean for monthly solar radio flux measurements at the 10.7cm wavelength. Historical records back to the earliest recorded data (1945) are shown in Figure 2. For reference, the current 25-year post-mission IADC orbit lifetime recommendation is overlaid onto the historical data; it can be seen that multiple solar cycles are encapsulated by this long time duration. Figure 2: Solar cycle (≈11-year duration) # 3.2 Symbols and abbreviated terms a Orbit semi-major axis A Satellite cross-sectional area with respect to the relative wind $A_p$ Earth daily geomagnetic index β Ballistic coefficient of satellite = $C_D \cdot A / m$ C<sub>D</sub> Satellite drag coefficient e Orbit eccentricity $F_{10.7}$ Solar radio flux observed daily at 2800 MHz (10.7 cm) in solar flux units (10<sup>-22</sup>W m<sup>-2</sup> Hz<sup>-1</sup>) F<sub>10.7</sub> Bar Solar radio flux at 2800 MHz (10.7 cm), averaged over three solar rotations $H_a$ Apogee altitude = a (1 + e) - $R_e$ $H_p$ Perigee altitude = a (1 – e) - $R_e$ IADC Inter-Agency Space Debris Coordination Committee ISO International Standard Organization #### **ISO/WD NWIP** LEO Low Earth orbit m Mass of satellite RAAN Orbit Right Ascension of the Ascending Node; the angle between the vernal equinox and the orbit ascending node, measured CCW in the equatorial plane, looking in the -Z direction. R<sub>e</sub> Equatorial radius of the Earth STSC Scientific and Technical Subcommittee of the Committee UNCOPUOS United Nations Committee on the Peaceful Uses of Outer Space #### 4 Orbit Lifetime Assessment ## 4.1 General Requirements The orbital lifetime of LEO-crossing mission-related objects shall be assessed using the processes specified in this document. Resulting orbit lifetime estimates can then be constrained to specified requirements using a combination of (1) initial orbit selection; (2) satellite vehicle design; (3) spacecraft launch and early orbit concepts of operation which minimize LEO-crossing objects; (4) satellite ballistic parameter modifications at EOL; and (5) satellite deorbit maneuvers. #### 4.2 Definition of Orbit Lifetime Estimation Process The orbit lifetime estimation process is represented generically in Figure 3. Figure 3: Orbit Lifetime Estimation Process ## 4.3 Orbit Lifetime Assessment Methods and Applicability There are three basic analysis methods used to estimate orbit lifetime, as depicted in Fig. 3. Method 1, clearly the highest fidelity model, utilizes a numerical integrator with a detailed gravity model, third-body effects, solar radiation pressure, and a detailed satellite ballistic coefficient model. Method 2 utilizes a definition of mean orbital elements<sup>5,6</sup> semi-analytic orbit theory and average satellite ballistic coefficient to permit the very rapid integration of the equations of motion, while still retaining reasonable accuracy. Method 3 is simply a table lookup, graphical analysis or evaluation of equations fit to pre-computed orbit lifetime estimation data obtained via the extensive and repetitive application of Methods 1 and/or 2. #### 4.3.1 Method 1: High-precision numerical integration Method 1 is the direct numerical integration of all accelerations in Cartesian space, with the ability to incorporate a detailed gravity model (e.g., using a larger spherical harmonics model to address resonance effects), third-body effects, solar radiation pressure, vehicle attitude rules or aero-torque-driven attitude torques, and a detailed satellite ballistic coefficient model based on the angle-of-attack with respect to the relative wind. Atmospheric rotation at the Earth's rotational rate is also easily incorporated in this approach. The only negative aspects to such simulations is (1) they run much slower than Method 2; (2) many of the detailed data inputs required to make this method realize its full accuracy potential are simply unavailable; and (3) any gains in orbit lifetime prediction accuracy are frequently overwhelmed by inherent inaccuracies of atmospheric modelling and associated inaccuracies of long term solar activity predictions/estimates. However, to analyze a few select cases where such detailed model inputs are known, this is undoubtedly the most accurate method. At a minimum, Method 1 orbit lifetime estimations shall account for J2 and J3 perturbations and drag using an accepted atmosphere model and an average ballistic coefficient. # 4.3.2 Method 2: Rapid semi-analytical orbit propagation Method 2 analysis tools utilize semi-analytic propagation of mean orbit elements<sup>4, 5</sup> influenced by gravity zonals $J_2$ and $J_3$ and selected atmosphere models. The primary advantage of this approach over direct numerical integration of the equations of motion (Method 1) is that long-duration orbit lifetime cases can be quickly analyzed (e.g., 1 second versus 1700 seconds CPU time for a 30-year orbit lifetime case). While incorporation of an attitude-dependent ballistic coefficient is doable for this method, an average ballistic coefficient is typically used. At a minimum, Method 2 orbit lifetime estimations shall account for J2 and J3 perturbations and drag using an accepted atmosphere model and an average ballistic coefficient. #### 4.3.3 Method 3: Numerical Table Look-Up, Analysis and Fit Equation Evaluations In this final method, one uses tables, graphs and equations representing data that was generated by exhaustively using Methods 1 & 2 (see above). The tables, graphs and equations provided in this standard can help the analyst assess orbit lifetime for their particular case of interest; all such Method 3 data in this paper were generated using Method 2 approaches. At a minimum, Method 3 orbit lifetime products shall be derived from Method 1 or Method 2 analysis products meeting the requirements stated above. # 5 Atmospheric density modelling The three biggest factors in orbit lifetime estimation are (1) the selection of an appropriate atmosphere model to incorporate into the orbit acceleration formulation; (2) the selection of appropriate atmosphere model inputs; and (3) determination of the space object's ballistic coefficient. We will now spend some time discussing each of these three aspects. # 5.1 Atmospheric Drag Models There are a wide variety of atmosphere models available to the orbit analyst. The background, technical basis, utility and functionality of these atmosphere models are described in detail in references 6 - 9. This standard will not presume to dictate which atmosphere model the analyst shall use. However, it is worth noting that in general, the heritage, expertise and especially the observational data that went into creating each atmosphere model play a key role in that model's ability to predict atmospheric density, which is in turn a key factor in estimating orbit lifetime. #### **ISO/WD NWIP** Many of the early atmosphere models were low fidelity and were created on the basis of only one, or perhaps even just a part of one, solar cycle's worth of data. The advantage of some of these early models is that they typically run much faster than the latest high-fidelity models (Figure 4), without losing a great deal of accuracy. However, the use of atmosphere models that were designed to fit a select altitude range (e.g., the "exponential" atmosphere model depicted below) or models that do not accommodate solar activity variations should be avoided as they miss too much of the atmospheric density variations to be sufficiently accurate. There are some early models (e.g., Jacchia 1971 shown below) which accommodate solar activity variations and also run very fast; these models can work well for long-duration orbit lifetime studies where numerous cases are to be examined. Conversely, use of the more recent atmosphere models (e.g., MSISE2000 and Jacchia-Bowman) are encouraged because they have substantially more atmospheric drag data incorporated as the foundation of their underlying assumptions. A crude comparison of a sampling of atmosphere models for a single test case is shown in Figures 5 and 6, illustrating the range of temperatures and densities exhibited by the various models. Figure 6: Comparison of a small sampling of atmosphere models ## 5.2 Long-Duration Solar Flux and Geomagnetic Indices Prediction Utilization of the higher-fidelity atmosphere models mentioned in the previous section requires the orbit analyst to specify the solar and geomagnetic indices required by such models. Key issues associated with any prediction of solar and geomagnetic index modelling approach are: - F<sub>10.7</sub> Bar predictions should reflect the mean solar cycle as accuracy as possible; - Large daily F<sub>10.7</sub> and A<sub>p</sub> index variations about the mean value induce non-linear variations in atmospheric density, and the selected prediction approach should account for this fact; i.e., one should account for the highly non-linear aspects of solar storms versus quiet periods; - The frequency of occurrence across the day-to-day index values is highest near the lowest prediction boundary (Fig. 8); - F<sub>10.7</sub> cycle timing/phase are always imprecise and should be accounted for; the resultant time bias that such a prediction error would introduce can yield large F<sub>10.7</sub> prediction errors of 100% or more; - The long time duration currently being advocated by the IADC (e.g., 25 years, although this is still under review and may double) would require that the solar/geomagnetic modelling approach provide at least that many years (e.g. 25) of predictive capability. - Predicted F<sub>10.7</sub> values should be adjusted to correct for Earth-Sun distance variations. Accounting for these constraints, the user shall adopt one of the two approaches: - Approach #1: Utilize Monte Carlo sampling of historical data mapped to a common solar cycle period; - Approach #2: Utilize a predicted $F_{10.7}$ Bar solar activity profile generated by a model such as is detailed in Ref. 10, coupled with a stochastic or similar generation of corresponding $F_{10.7}$ and $A_{o}$ values<sup>e.g., 11</sup>. Since Approach #2 is a well-known and common approach, the focus of the remainder of this section will be devoted to the Monte Carlo "Random Draw" approach<sup>3</sup>. Note (Fig. 2) that we already have more than five solar cycles of observed solar and geomagnetic data to choose from. Processing of this data maps each coupled and correlated triad of datum ( $F_{10.7}$ , $F_{10.7}$ Bar, and $A_o$ ) into a single solar cycle range of 10.82546 years (3954 days). By mapping this historical data into a single solar cycle (Figures 9 through 11), the user can then sample coupled triads of ( $F_{10.7}$ , $F_{10.7}$ Bar, and $A_p$ ) data corresponding to the orbit lifetime simulation day within the mapped single solar cycle. This solar/geomagnetic data can then be updated at a user-selectable frequency (e.g. once per orbit or day), thereby simulating the drag effect resulting from solar and geomagnetic variations consistent with historical trends for these data. Since we have accumulated daily data since the February 14, 1947, on any given day within the 3954-day solar cycle we have at least five data triads to choose from. It is important that the random draw retain the integrity of each data triad, since $F_{10.7}$ , $F_{10.7}$ Bar and $A_p$ are interrelated. In summary, the selected method used for modeling solar and geomagnetic data is to select a new coupled triad of $(F_{10.7}, F_{10.7}, F_{10.7},$ Figure 7: Solar flux estimated upper, lower and representative trends Figure 8: Solar flux distribution in percentage of localized Min/Max variation Figure 9: F<sub>10.7</sub> Normalized to Average Solar Cycle Figure 10: F<sub>10.7</sub> Bar Normalized to Average Cycle Figure 11: $A_p$ Normalized to Average Cycle It can be seen from Figure 11 that $A_p$ is (1) unpredictable; (2) loosely correlated with the solar cycle; and (3) volatile. Figure 12 demonstrates that density varies greatly (i.e., several orders of magnitude) depending upon $A_p$ ; thus, a geomagnetic storm can induce large decreases in orbital energy (orbit decay) that the use of some average $A_p$ value would miss. Correspondingly, the analyst should incorporate $A_p$ variations into the geomagnetic index predictions. Figure 12: Log(Density) Variation as a Function of $A_p$ Value # 5.3 Estimating Ballistic Coefficient (C<sub>D</sub>A/m) The first step in planning a LEO-crossing space object disposal is to estimate the ballistic coefficient ( $C_DA/m$ ). Accurate estimation of the space object's ballistic coefficient is another key element in the orbit lifetime analysis process. Frequently, the analyst will select an average ballistic coefficient for the duration of the prediction, but this is not always the case. We will examine cross-sectional area and drag coefficient estimations separately. Spacecraft mass shall be varied according to best-available knowledge, but may typically be assumed to be constant from End-of-Life until orbit decay. #### 5.3.1 Estimating Cross-Sectional Area with Tumbling and Stabilization Modes The average cross-sectional area shall be used to compute the ballistic coefficient of a tumbling spacecraft unless sufficient information exists to invalidate this assumption. The average cross-sectional area can be simply determined as a straightforward two-point average of the minimum and maximum cross-sectional areas. Or, this approach can be extensively refined by integrating the cross-sectional area of the spacecraft across all anticipated tumbling attitudes, and then dividing the result by the difference between the limits of integration. The analyst is then left with a properly weighted average cross-sectional area. For satellites with a large length to diameter ratio, the analyst shall consider whether gravity gradient stabilization will occur and adjust the cross-sectional area accordingly. Similarly, for satellites which have a large aero-torque moment (*i.e.*, the center-of-gravity and center-of-pressure are suitably far apart and the aerodynamic force is suitably large), the analyst shall consider whether the satellite would experience drag-induced passive attitude stabilization and adjust the cross-sectional area accordingly. #### 5.3.2 Estimating Drag Coefficient A reasonable value of the dimensionless drag coefficient, $C_D$ , is 2 for a typical spacecraft. However, the drag coefficient, $C_D$ , depends on the shape of the satellite and the way air molecules collide with it. In free molecular flow, $C_D$ is usually assumed to be the theoretical value of 2. However, for certain geometric configurations such as spheres, cylinders and cones, the value of axial drag coefficient, $C_D$ , can be evaluated more precisely than previously noted provided something is known about the flow regime and reference area<sup>3</sup>. The analyst shall consider $C_D$ variations based on satellite shape. However, for long-duration orbit lifetime estimations, $C_D$ variation as a function of orbit altitude<sup>3</sup> may safely be ignored since the percent error will be quite small. # 6 Orbit lifetime sensitivity to Sun-synchronous, Magic and Molniya orbits For sun-synchronous orbits, orbit lifetime has some sensitivity to the initial value of RAAN due to the density variations with the local sun angle. Results of orbit lifetime estimations using both JB2006 and MSIS2000 show similar trends that orbits with 6:00 am local time have longer lifetime than orbits with 12:00 noon local time by about 5.5 percent<sup>3</sup>. This maximum difference (500 days) translates into a 5% error which can be corrected by knowing the local time of the orbit. As a result, Method 1 or 2 analyses of the actual sun-synchronous orbit condition shall be used when determining the lifetime of Sun-synchronous orbits. For Molniya orbits, it has been found to be difficult to iterate to lifetime threshold constraints due to the coupling in eccentricity between the third-body perturbations and the drag decay. Due to this convergence difficulty, only Method 1 or 2 analyses shall be used when determining initial conditions which achieve a specified lifetime threshold for Molniya orbits. The so-called 'Magic' orbit is defined as having a three-hour period with a repeating groundtrack, where the orbit is highly-elliptical, critically-inclined and Sun-synchronous. Similar iteration difficulty has been found for these Magic orbits, and Method 1 or 2 analyses shall be used when determining the lifetime of 'Magic' orbits. ## 7 Implication of Observed Thermospheric Global Cooling Recent indications of global cooling in the thermosphere may have gradually increasing role in orbit lifetime estimation. The thermosphere is defined to occur roughly between 80 and 500 km altitude, which is a key part of the LEO regime for which the ISO standard is being developed. Both satellite measurements<sup>14</sup> and theoretical models<sup>15, 16</sup> indicate that the thermosphere is cooling off, causing density to lower. The mechanism causing this change appears to be that as CO<sub>2</sub> concentrations have increased (from 320 ppmv in 1965 to around 380 ppmv in 2005) at altitudes below 30km30, and the upper atmosphere is correspondingly cooling down. It is estimated that because of this effect, atmospheric density will decrease by between 1.7%<sup>14</sup> and 2%<sup>15, 16</sup> per decade. This decrease yields a corresponding increase in orbit lifetime of between 4 and 7 percent<sup>3</sup>. # **Bibliography** - [1] Inter-Agency Debris Committee, "IADC Space Debris Mitigation Guidelines", IADC-02-01, 15 October 2002. - [2] Scientific and Technical Subcommittee (STSC) of the United Nations (UN) Committee on the Peaceful Uses of Outer Space (COPUOS), UN Space Debris Mitigation Guidelines, A/AC.105/890, p.42ff, Feb 2007 - [3] Oltrogge, D.L. and Chao, C.C., "Standardized Approaches for Estimating Orbit Lifetime after End-of-Life", AAS/AIAA Astrodynamics Specialists Conference, Mackinac Island, MI, August 2007. - [4] Kozai, Y., "The Motion of a Close Earth Satellite", Astronomical Journal 64, 367—377, November 1959. - [5] Orbital Motion 2<sup>nd</sup> Edition, Roy, A.E., Publ. by Adam Hilger, Ltd, Bristol, ISBN 0-85274-462-5. - [6] ANSI/AIAA Guide to Reference and Standard Atmosphere Models, ANSI/AIAA document #G-003B-2004 - [7] Marcos, Frank A., Bowman, Bruce R., Sheehan, Robert E., "Accuracy of Earth's Thermospheric Neutral Density Models," AIAA 2006-6167, AIAA/AAS Astrodynamics Specialist Conference, 2006. - [8] NASA Atmosphere model comparisons, URL: <a href="http://modelweb.gsfc.nasa.gov/atmos/atmos index.html">http://modelweb.gsfc.nasa.gov/atmos/atmos index.html</a>, [cited 28 Sept 2007]. - [9] WG4 ISO Standard on atmosphere models (TBS) - [10] Niehuss, K.O., Euler Jr., H.C., and Vaughan, W.W., "Statistical Technique for Intermediate and Long-Range Estimation of 13-Month Smoothed Solar Flux and Geomagnetic Index," NASA Technical Memorandum TM-4759, dated September 1996. - [11] Woodburn, J. and Lynch, Shannon, "A Numerical Study of Orbit Lifetime," AAS/AIAA Astrodynamics Specialists Conference, Lake Tahoe, AAS 05-297, 2005. - [12] "2800 MHz SOLAR FLUX," dated 20 October 2006, URL: <a href="ftp://ftp.ngdc.noaa.gov/STP/SOLAR\_DATA/">ftp://ftp.ngdc.noaa.gov/STP/SOLAR\_DATA/</a> SOLAR\_RADIO/FLUX/read.me [cited 14 March 2007]. - [13] "Gottingen K<sub>ρ</sub> /A<sub>ρ</sub> values," dated 20 October 2006, URL: <u>ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC\_DATA/</u> INDICES/KP AP/read-me.txt [cited 14 March 2007]. - [14] Marcos, F.A., Wise, J.O., Kendra, M.J., Gossbard, N.J., and Bowman, B.R., "Detection of a long-term decrease in thermospheric neutral density," *Geophysical Research Letters*, Vol. 32, L04103, doi:10.1029/2004GL021269, 2005. - [15] Qian, Liying, Roble, Raymond G., Solomon, Stanley C., and Kane, Timothy J., "Calculated and Observed Climate Change in the Thermosphere, and a Prediction for Solar Cycle 24," *Geophysical Research Letters*, Vol. 33, L23705, doi:10.1029/2006GL027185, 2006. - [16] Solomon, Stanley C., Qian, Liying, and Roble, Raymond G., "Thermospheric Global Change during Solar Cycle 24," AGU Fall Meeting, San Francisco, CA, 12 December 2006. # Annex A: Space population distribution (informative) # A.1 Space object distribution The launch vehicle and its family of deployed objects pass through various orbit regimes during the ascent phase from launch up to the mission orbit. As can be seen in Figures A.1 and A.2, the collision risk is especially high in specific orbital regimes (the LEO and GEO belts and at the altitudes of deployed constellations). Figure A-1: Sample near-earth space spatial density, 1998 Figure A-2: Distribution in low-Earth orbit Figure A-3: Space population by altitude and eccentricity Figure A-4: Distribution in near-Earth space # Annex B: 25-Year Lifetime Predictions Using Random Draw Approach (informative) If the user of this standard wishes to determine whether a space object has a 25-year orbit lifetime or not, a set of Method 3 analysis products have been generated and are available in this Annex. This Method 3 data was generating utilizing solar/geomagnetic modelling Approach #1, coupled with a Method 2 orbit lifetime analysis tool (1Earth Research semi-analytic orbit propagator 'QPROP'). QPROP was used to examine the 8 million cases contained in Table B-1, spanning a variety of times-into-the-solar-cycle, inclinations, perigee altitudes ( $H_p$ ), apogee altitudes ( $H_a$ ), and ballistic coefficients. QPROP uses semi-analytic propagation of mean orbit elements coupled with gravity zonals $J_2$ and $J_3$ and selected atmosphere models (including MSISE2000, Jacchia-Bowman 2006, Jacchia 1971, etc). QPROP has been used to analyze orbit lifetime and satellite re-entry by several Government and industrial organizations. Its accuracy has been validated by high-precision numerical integration results (Method 1 type). Table B-1: QPROP Grid of Test Cases | Parameter | Lower Limit | Upper Limit | Step Size | |------------------------------|-------------|-------------|-----------| | Time into Solar Cycle (days) | 0 | 2964.75 | 3953/4 | | Inclination (deg) | 0 | 90 | 30 | | C <sub>D</sub> A/m | 25 | 500 | 25. | | Perigee Altitude (km) | 100 | 2000 | 50 | | Apogee Altitude (km) | 250. | 10000 | 50 | | Number of Trials | 0 | 3 | 1 | The primary independent variables of the orbit lifetime estimation process are contained in Table B-1. The dependence of orbit lifetime upon orbit inclination is shown for the same 200 cm²/kg sample case in Figure 17. By stepping through all of these variables in the ranges and step sizes indicated in the table, and then detecting those cases which resulted in a 25-year orbit lifetime, the dependencies between ballistic coefficient and orbit initial condition can be found as shown in Figures 18 and 19. While both the MSISE2000 and JB2006 atmosphere models are implemented in QPROP, the MSISE2006 model was used for these analyses due to its faster runtime with similar long-term propagation accuracy. Random draws of the triad of solar and geomagnetic index parameters (discussed in Section 6.2) were implemented. In order to capture variations exhibited by the random draw process, a number of trials were used (four, in this case). For a satellite having a ballistic coefficient of 200 cm<sup>2</sup>/kg and starting in a circular, equatorial orbit at the altitude shown, Figure 16 depicts the resultant ranges of anticipated orbit lifetime. The 'minimum' and 'maximum' incorporates the entire range of orbit decay start times with respect to the solar cycle minimum. The right-hand side of the plot shows how variable the results can get in the neighborhood of 25 years estimated lifetime. Figure 16: Sample: orbit lifetime ( $C_DA/m = 200 \text{ cm}^2/\text{kg}$ , equatorial orbit) as a function of initial orbit altitude. # Orbit Lifetime Ratio Between Equatorial & Inclined Orbits Figure 17: Orbit lifetime dependence upon orbit inclination. #### **ISO/WD NWIP** Future studies may use more trials and incorporate finer step sizes, but the large computer runtime requirements of these many cases led to the initial selection of 4 trials per initial set of orbit conditions. Through extensive simulation, it was found for **non-Sun-Synchronous** orbits that orbit lifetime results are not sensitive to the three angular orbit elements (RAAN, argument of perigee and mean anomaly) and therefore the three initial values are arbitrarily chosen and assumed for all cases. Note that the sensitivity to RAAN and argument of perigee may be significant for sun-synchronous, Magic and Molniya orbits; this was discussed in Section 6. Note: it is recommended that Sun-Synchronous orbit cases be studied using a 'Method 1' or '2' approach; until such time as their orbit lifetimes can be appropriately categorized in graphical and/or functional form. Further, it was found that orbits having inclinations greater than 90 degrees could be well-represented by the pole-symmetric orbits having complementary orbit inclinations (justifying analysis of only 0 to 90 degrees as shown in Table B-1). The colored regions shown in Figures B-1 and B-2 denote the categorization of the orbit initial conditions at the start of the orbit decay with respect to the IADC 25-year recommended post-mission lifetime. The 'green' region denotes orbit initial conditions which will result in an orbit lifetime shorter than 25 years (in all observed cases). The 'yellow' region denotes initial orbit conditions that could result in an orbit lifetime that is greater than the recommended 25-year limit, in certain circumstances. One can observe from Figures B-1 and B-2 that there are a wide variety of initial orbit, timing, solar and geomagnetic conditions which can combine to produce an orbit lifetime of 25 years. These figures, while helpful, still leave the user with uncertain knowledge of what the post-mission orbit lifetime will be specific to their initial conditions. Fortunately, the results of the 7.68 million analyses have been retained<sup>3</sup>; interpolation of these results is possible to predict orbit lifetime for a specific set of initial conditions. And, to the extent that 4 sets of random draw cases is not necessarily an exhaustive analysis, additional cases can be run to further refine the orbit lifetime estimation grid and improve interpolation results. Orbit lifetime data generated by the many analysis runs can be fit with a set of analytical expressions which predict $\underline{\text{average}}$ orbit lifetime (in years) as a function of $H_p$ , inclination, ballistic coefficient and orbit eccentricity<sup>3</sup>. Note, however, that the resulting set of equations exhibits a peak deviation of up to 100% from the underlying estimated lifetime data in extreme cases, coupled with an average standard deviation of less than 20% error above 200 km. The effort invested in obtaining this unsuitable result indicates that a better approach would be to not fit the data, but rather to: (1) use the Method 2 analysis tool to entirely map out the orbital lifetime topography; (2) store the lifetime topography data electronically; and (3) provide space operators with a simple and fast electronic access to a topography interpolation function. # Perigee vs Apogee for Orbits Exhibiting a 25-yr Lifetime (All orbit inclinations, 25 < ballistic coeff < 500 cm<sup>2</sup>/kg) Figure B-1: Perigee versus apogee boundaries for 25-year orbit lifetime conditions ( $25 < C_DA/m < 500 \text{ cm}^2/\text{kg}$ ). Figure B-2: Ballistic coefficient versus initial perigee altitude for all cases exhibiting 25-year orbit lifetime (apogee assumed < 10,000 km)